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Analysis of the effect of embedded fibre 
length on fibre debonding and pull-out from 
an elastic matrix 
Part 1 Review of theories 

R.J. GRAY 
Department of Civil Engineering, The University of British Columbia,  Vancouver, 
British Columbia, Canada 

The nature and properties of the resistance to fibre-matrix interfacial debonding in 
composites composed of ductile fibres in a brittle or elastic matrix can be determined 
using the single-fibre pull-out test. The results of such tests on cementitious matrix 
specimens indicate a non-linear relationship between the debonding and/or pull-out load 
and the embedded length of the fibre. Several of the theories developed to explain the 
debonding process and enable estimation of the parameters representing the debonding 
resistance through an analysis of pull-out test results are reviewed in this first of a 
two-part paper. The application of these theories to experimental data for steel f ibre- 
cementitious matrix pull-out specimens is examined in the second part. 
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r m 
thickness of the fibre-matrix 

interface Ae 
diameter of the fibre Am 
embedded fibre length at which fibre 
fracture rather than pull-out occurs C1 
debonded fibre length 
embedded length of the fibre in a pull-out 
specimen 6'2 
a minimum embedded fibre length which 
equals (1/a2)cosh -1 (Tib, max/Tib, f)  1/2 

minimum embedded fibre length required D 
to support the debonding stress in the 
fibre Em 
maximum embedded fibre length at Ee 
which complete debonding occurs instan- Gi 
taneously 
elastic shear flow resistance to f ibre-  Gm 
matrix interfacial debonding P~ 
frictional shear flow resistance to slipping Pe, max 
at the fibre-matrix interface after the 
elastic bond has broken Pf, uat 
radius of the fibre 
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effective radius of the matrix block in a 
pull-out test specimen 
cross-sectional area of the fibre 
cross-sectional area of the matrix block in 
a pull-out test specimen 
a constant representing the normal com- 
pressive stress at the fibre-matrix inter- 
face 
a constant representing the coefficient of 
friction between the fibre and the matrix 
at the interface 
length of the "debonding plateau" (see 
Fig. 5a) 
modulus of elasticity of the matrix 
modulus of elasticity of the fibre 
shear modulus of the fibre-matrix inter- 
face 
shear modulus of the matrix 
load applied to the fibre in a pull-out test 
maximum load applied to the fibre in a 
pull-out test 
applied load at which fibre fracture 
Occurs  
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Pf, edb 

P f ,  edb 

Pf ,  d 

Pf~ r 
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5f 

A 

P 

Pf 
Pm 

Of, max 

t 
Gf, max 

Of, po 

Of, ul t  

a L n  

Ti, max 

Tib, av 

Tib, max 

Tib, f 

load required to break the adhesional or 
elastic fibre-matrix interfacial bond in 
pull-out test specimen 
maximum value of Pf, cab (see Fig. 7) 
instantaneous decrease in applied fibre 
load when debonding is complete 
residual fibre load required to overcome 
initial frictional resistance to fibre pull- 
out 
applied fibre load required to debond an 
infinitely long fibre with no frictional 
resistance to slipping at the fibre-matrix 
interface 
an elastic constant 
al = ( 2G~bi rf Ef) 1/2 
a2 = [(2rrGm/ln (rmrf))(1/AeEf 

- 1 / A m e m ) ]  " 2  

a3 = [4rrGm/ln (rm/rf)r~Ef] 1/2 
a4 = [Gm(AfEf + AmEm/AfEfAmEm) ] 1/2 
surface energy of the fibre-matrix inter- 
face 
fibre extension or displacement in a pull- 
out test 
slope of the linear portion of the Pf, max 
against 0t21 e curve and is equal to rib, fffdf/a2 
fibre-matrix misfit 
coefficient of friction between the fibre 
and matrix at the interface 
Poisson's ratio of the fibre 
Poisson's ratio of the matrix 
stress in the fibre at which interfacial de- 
bonding occurs in a pull-out test speci- 
men, i.e. debonding stress 
plateau debonding stress (see Fig. 5b) 
stress in the fibre when fibre pull-out 
begins, i.e. immediately following the 
completion of interfacial debonding 
ultimate tensile strength of the fibre 
normal compressive stress exerted by the 
matrix on the fibre across the interface 
average shear stress at the fibre-matrix 
interface 
maximum shear stress at the fibre-matrix 
interface 
average shear strength of the fibre-matrix 
interfacial bond 
maximum or adhesional shear strength of 
the fibre-matrix interfacial bond 
frictional resistance to slipping at the 
fibre-matrix interface after the elastic 
bond has broken 

*Debonding is herein defined as relative displacement or slip 
ing the two. 
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1. Introduction 
Fundamental information on the nature and 
strength of the interfacial bond between the fibre 
and the matrix in a fibre-reinforced composite 
material can be obtained using the single-fibre, 
concentric pull-out test specimen and configura- 
tion shown schematically in Fig. 1. As noted pre- 
viously by the present author [1], stress distribu- 
tions in this specimen are the same as those within 
and on the surface of a fibre normal to and bridg- 
ing a matrix crack in a composite which fails by 
matrix tensile fracture followed by fibre-matrix 
debonding* and fibre pull-out, i.e. the common 
failure mode for discontinuous fibre composites 
with a brittle or elastic matrix. 

Resistance to the debonding and pull-out pro- 
cesses is principally a function of the fibre-matrix 
interfacial bond shear strengthand the interfacial 
bond area, i.e. embedded fibre length times fibre 
diameter. Theoretical analyses of this resistance 
were initially developed for ductile or plastically 
deforming matrices and a uniform interfacial shear 
stress along the length of the embedded fibre was 
assumed. In this case, catastrophic failure of the 
interfacial bond occurs when its shear strength is 
reached and the debonding load, i.e. the peak load 
observed in the pull-out test, is directly propor- 
tional to the embedded fibre length. Experimental 
results for composites containing such matrices 
show agreement with this assumption [2-4].  

However, theoretical analysis of the stress con- 
ditions in a pull-out test specimen with a brittle or 
elastic matrix show that the distribution of shear 
stress along the interface is not uniform, and that 
the relationship between the debonding and/or 
pull-out load and the embedded length of fibre in 
the specimen is more complex than indicated 
above. Furthermore, experimental results for steel 
fibre-cementitious matrix specimens in particular 
show that the variation of the peak pull-out load 
with embedded fibre length is nonlinear [5-8] ,  
and consequently it cannot be assumed that the 
true value of the interfacial bond shear strength 
can be obtained simply from this load and the 
nominal area of interfacial contact. 

Several of the theories developed to describe 
and explain the variation of the debonding and/or 
pull-out load with embedded fibre length, and/or 
to relate the true value of the interfacial bond 
shear strength to the average value calculated from 

between the fibre and the matrix at the interface separat- 
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Figure 1 The single-fibre concent r ic  pul l-out  test.  

pull-out test results, for brittle or elastic matrices 
are examined in this paper. The applicability of 
these theories to pull-out test results for steel 
f ibre-cement i t ious  matrix specimens will be 
examined in a subsequent paper. 

2. Theoretical analyses of pull-out test 
results t 

A relationship between f ib re -mat r ix  interfacial 
shear stress and embedded fibre length in a pull- 
out test specimen has been developed by 
Greszczuk [9] using the assumptions of  the shear 
lag theory, i.e. assuming that the extensional 
stresses in the matrix are negligible relative to 
those in the fibre and that the shear stresses in the 
fibre are small compared to those in the matrix. 
An element of  the fibre in a model pull-out speci- 
men and the corresponding boundary conditions 
are considered, see Fig. 2a, and it is shown that the 
maximum shear stress along the interface, T i , m a x ,  

occurs at the point where the fibre enters the 
matrix, i.e. at x = 0. This maximum shear stress is 
given by 

Ti ,max ----- Ti,avOtlle coth alle (1) 

where ri,av is the average shear stress along the 
interface. As l e approaches zero, the function 
allecothafle approaches unity and hence the 
value of  ri, m a x  approaches that of  71, av- 

Greszczuk assumes that complete f ibre-mat r ix  
debonding takes place when the maximum inter- 
facial shear stress, ~'i, max, is equal to the maximum 
interfacial bond shear strength, Tib, max. For a 
given fibre embedment  length, the average inter- 
facial shear stress, 7i, av, at failure is then equal to 
the average interfacial bond shear strength, rib,av. 
This can be calculated from the pull-out test results 
using 

_ Pf, max (2) 
Tib, av lrdfle 

which assumes that the effect of  bond, if any, 
between the fibre end and the matrix is negligible. 
Therefore, Equation 1 can be rewritten in the 
form 

"rib, max = Tib, avO~l le coth a l  le (3) 

and by analogy to the above, as l e approaches zero, 
the value of  rib,max approaches that of  rib,av. 

For a given fibre and matrix, a l  is assumed to 
be a constant and hence the ratio of  rib, max to 
rib, av is a function of  le only. An estimated value 
of Tib, max can therefore be obtained by: (1) test- 
ing pull-out specimens with various fibre embed- 
ment  lengths, (2) calculating rib, av values from the 
test results using Equation 2, (3) plotting these 
values as a function of/e ,  and (4) extrapolating the 
resulting curve back to l e = 0 as shown in Fig. 2b. 

Rearrangement of  Equation 3 to 

Tib, m a x  
Tib, av ~-" 

Oql e c o t h  a l l  e 

shows that rib, a v is a function of le which 
decreases as le increases, as shown in Fig. 2b. It 
follows that the ratio Pf, max//e decreases as l e in- 
creases, and, as  l e becomes large, the slope of  the 
curve relating Pf, max to l e becomes small. That is, 
the curve relating Pf ,  max t o  le approaches some 
limiting value as le becomes large, as shown in Fig. 
2c. The method employed to analyse pull-out test 
results for ductile or plastically deforming matrices 
assumes that ~'ib, av is constant, i.e. not a function 
o f / e ,  and hence there is a straight line relationship 
between Pf, max and l~ as also shown in Fig. 2c. 

As Lawrence [10] has pointed out, Greszczuk 
assumes that all of  the fibre load is transferred to 
the surrounding matrix by adhesional or elastic 
"shear" forces at the interface and that immediate, 
catastrophic f ibre-mat r ix  debonding occurs when 
these shear forces are overcome. Lawrence, how- 
ever, assumes that partial f ib re-mat r ix  debonding 
may occur, and takes the contribution to the load 
transfer process of  frictional resistance forces act- 
ing over the debonded portion of the interface 
into account in his analysis. Using a model with 
the same geometry as that considered by 
Greszczuk, (Fig. 2a), it is shown that when the 
applied load is such that Ti, m a  x > Tib, m a x ,  the fibre 
starts to debond at the point where it enters the 
matrix. Whether debonding continues at this load 
or an increase in load is necessary depends on the 

~It is generally assumed that  the fibre is round  and  straight,  i.e. u n d e f o r m e d ,  and is much  more  ducti le  than  the  matr ix.  
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Figure 2 Fibre element in a pull-out test 
model and experimental results (after 
Greszczuk [9]). (a) Fibre element in 
pull-out model, (b) variation in average 
interfacial bond shear strength with 
embedded fibre length, and (c) variation 
in maximum pull-out load with embed- 
ded fibre length. 

embedded length of the fibre, le, the ratio of  the 
shear strength of the elastic interfacial bond, 
rib, max, to the frictional resistance to slipping after 
this bond has broken, rib, e, and a "minimum" 
embedded fibre length, /e, min, which is also a 
function of the ratio rib, ma,Jrib, ~. For example, if 
rib, max/ri, ~ > 1 and le > le, min, the debonding pro- 
cess is not catastrophic and a further increase in 
applied load is necessary to continue it. If  how- 
ever, Tib,max/Tib, f > 1 but Ie </e,min, debonding 
occurs catastrophically as soon as the applied load is 
such that Ti, max>Tib,  max. The maximum fibre 
load required to achieve complete debonding and 
initiate pull-out for these two cases is given by 

Tib max ?rdf 
Pf,  max - ' t a n h  a21 e (4)  

~2 

for (le ~< le, mtn), and 

Pf,  max = 7"ib' maxTrdf tanh a2le, rain 
a2 (S) 

" l- Tit) ' f~df (/e -- le, min) 

where (/e > le, min). 

Once debonding has been completed, the resist- 
ance to fibre pull-out drops to a value of  rib,~rd~le, 
and subsequently decreases as the fibre is pulled 
out of  the matrix. 

To determine the maximum interfacial bond 
shear strength, ~'ib, ma,,, experimentally, the maxi- 
mum pull-out load, P~,max, for fibres of  various 
embedded lengths, le, is measured and plotted 
against the function a2le- The shape of the curve 
obtained is dependent upon the ratio rib, max/rib, 
as shown in Fig. 3. The form of the load against 

fibre displacement curve obtained in the pull-out 
test is also dependent on this ratio and schematic 
load-displacement curves for various ratios are 
shown in Fig. 4. 

If  the Pf, max against ot21 e curve is a straight line, 
rib, max/rib, e = 1 and the interfacial resistance to 
debonding is purely frictional in nature. The shear 
stress along the interface can therefore be treated 
as a constant [11] and the "effective" shear 
strength of the bond can be calculated using Equa- 
tion 2. Debonding is not catastrophic in this case, 
but, as shown in Fig. 4a, the pull-out load 
decreases linearly from the maximum applied load 
as the fibre is extracted from the matrix*. 

For  l<Tib, max/Tib, f<~ the pull-out load 
against fibre displacement curve is shown in Fig. 
4b. In this case, a point of  discontinuity occurs on 
the Pf, max against a21 e curve (Fig. 3) at le equal to 
le, min where the slope of the curve becomes con- 

~f l  rlloX 
Til~'m~ = I 

Tib ' f  I < Tib lm~ < O0 

_ _ 

// _ ~ &i 
/ ':;d x! 

cta l e 

Figure 3 Variation of maximum pull-out load with 
embedded fibre length factor for various friction con- 
ditions (after Lawrence [ 10]). 

*It is assumed that  the coefficients of  static and dynamic friction at the f ibre-mat r ix  interface are equal in value. 
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Figure 4 Variation of  pull-out load with fibre displacement for various interfacial friction conditions.  

m = t D  

stant. The slope, A, is related to the frictional 
resistance to fibre pull-out after complete debond- 
ing has occurred, and, according to Lawrence, can 
be set equal to "rib, fndf/a2. Therefore 

a2A 
(6) r ib '  f = ~'df 

and, from the definition if /e, min, the maximum 
interfacial bond shear strength may be determined 
using 

a2D 2 
Tib'max = ~'df cosh &2le, min (7) 

where A and le, min are obtained from the experi- 
mental curve of Pf, max against 0~2l e .  

If  the curve relating the maximum pull-out load 
and the embedded fibre length has no obvious dis- 
continuity and becomes approximately linear at 
long embedment  lengths, then the frictional shear 
resistance is very small, Fig. 4c. Therefore "rib, max/ 
rib, f ~ ~ and all embedded fibre lengths are less 
than le, min. The maximum shear strength of  the 
interfacial bond may be determined from the 
asymptote,  P f ~ ,  of the experimental Pf, max 
against a2l e curve, since tanh 0~2/e -+ 1 as I e -+ oo, 
and hence Equation 4 can be re-arranged to give 

_ Pfooa2 (8) 
"Fib, max ~'df 

Note that in Equation 4, as l e ~ 0, tanho~2/e 
O~2/e, and therefore "Fib, max -+ e l ,  max/~ 'd f /e ,  which is 
equal to rib, av according to Equation 2. This agrees 
with the proposition by Greszczuk [9], previously 
described, that "Fib, max can be determined by 
extrapolating the experimental curve relating 
"Fib.av and l e back to l e = 0. 

Takaku and Arridge [12], like Greszczuk, do 

not take the contribution of frictional resistance 
forces acting over a debonded portion of the 
f ibre-mat r ix  interface into account in their deriva- 
tion of  the relationship between the maximum 
load required to cause debonding and the embed- 
ded fibre length. They also assume that the 
debonding process is catastrophic as soon as 
"Fi, max > 'rib, max  at the point where the fibre enters 
the matrix, and they conclude that the relation- 
ship between "rib, max and l e is the same as that 
developed by Greszczuk,i that is 

Tib, max = ' r i b ,  ava3leCOthafl e (9) 

with the exception that the elastic parameter, a3, 
is defined differently. 

By re-arranging Equation 9 and expressing 
"rib, av in terms of the maximum stress in the fibre 
when debonding occurs, of, max, it is shown that: 

O'f' max -- t a n h  a3/e .  (10) 
2'rib, max/r  f ~3 

It is then assumed that 'rib, max and a3 are "adjust- 
able" parameters which can be evaluated from the 
experimental results as follows. The relationship 
between tanh l e and le, which is said to be a "nor- 
malized" curve representing Equation 10, and the 
experimental relationship between Of, m a  x and le 
are plotted on natural logarithmic paper. The 
"shift distances" required to superpose the experi- 
mental results on the normalized curve by moving 
them parallel to the vertical and horizontal axes 
are determined and set equal to (2rlb, max/rfa3) -1 
and a3 respectively. The value of "rib, max can then 
be calculated from these results. 

However, Takaku and Arridge have considered 
the resistance offered by frictional forces at the 
interface to fibre pull-out after complete debond- 
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ing has occurred, and have derived the following 
relationship bet~een the initial pull-out stress in 
the fibre, o~. po, and/e: 

O~,p o = C , [1 - - exp ( -C2 /e ) ]  ( l l )  

where C1, a function of the normal compressive 
stress exerted by the matrix on the fibre across the 
interface, Olin, and the elastic properties of the 
fibre and matrix, is defined as 

C1 = ~ + vm) (12) 
EmPf 

and C2, a function of the coefficient of friction 
between the fibre and matrix at the interface, p, 
and their elastic properties, is defined as 

2EmVf/~ 
G - ( 1 3 )  

Errs(1 + vm)" 

Values for C1 and 6'2 can be determined from the 
experimental relationship between Of, po and le, 
and hence estimates of the values of o'i, n and p can 
be obtained. 

The transfer of  stress between the fibre and the 
matrix due to frictional resistance to slipping at the 
interface subsequent to fibre-matrix debonding 
has been examined in some detail by Pinchin and 
Tabor [13, 14]. They propose that shrinkage of a 
cementitious matrix around an embedded fibre 
during curing results in a "misfit" between the 
fibre and the matrix and hence a compressive con- 
tact pressure normal to the interface. This contact 
pressure can be expressed in terms of the f ibre-  
matrix misfit, X, i.e. the difference between the 
radius of the fibre and the radius of the hole in 
the matrix in the absence of the fibre. The reduc- 
tion in this compressive contact pressure as a result 
of lateral contraction of the fibre when subjected 
to a tensile pull-out load is also taken into account 
and the dependence of O~,po on I e is expressed in 
the same form as Equation 11 where 

XE~ 
C 1 = - -  (14) 

rfPf 

and 
2vf/~ 

C2 = gf r f [ (1  + Vm)/Em + (1 q- pf) /gf]  " (15)  

An estimate of the value of X can be obtained 
from the experimental relationship between O~,po 
and le. 

Pull-out test results obtained by Pinchin and 
Tabor indicate, however, that shrinkage of the 
matrix also causes microcracks to form at the 
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interface, and these result in a reduction in the 
frictional resistance to pull-out and non-linear or 
inelastic pull-out behaviour. Pull-out behaviour is 
further complicated by a "compaction" of the 
matrix adjacent to the fibre which effectively 
enlarges the fibre "hole" in the matrix and reduces 
the fibre-matrix misfit. This "compaction" is 
attributed to the pull-out process itself. 

Pinchin and Tabor [13] also observed that shear 
failure occurred in the cementitious matrix 
adjacent to the fibre as well as at the fibre-matrix 
interface during the "debonding" and pull-out of 
fibres with "rough" surfaces. On this basis, they 
conclude that the adhesive shear strength of tile 
fibre-matrix interfacial bond and the cohesive 
shear strength of the mat r ix  are of  a similar 
magnitude. : 

Bowling and Groves [15] have developed a 
model in which the debondingof a fibre of embed- 
ded length greater than a certain critical length 
occurs by the progression of a plastic yielded zone 
along the fibre at a constant debonding load. This 
load is a function of the stressrequired to produce 
sufficient radial contraction of the fibre to give its 
"rough" surface clearance from the matrix. 
Debonding ceases when a minimum length of the 
fibre, i.e. the critical length; lk, which will just sup- 
port this debonding load, remains in contact with 
the matrix. Pull-out of the fibre then occurs as this 
"plug" of unyielded material is withdrawn from 
the matrix. 

Following a theoretical treatment of debonding 
originally proposed by Outwater and Murphy 
[16], Bowling and Groves express the "debonding 
stress", i.e. the stress in the fibre at the debonding 
load, as a function of the fibre-matrix interfacial 
surface energy, 7i, and the resistance to shearing at 
the interface after debonding has occurred, taken 
here as rib,f, as follows: 

= + , - ( 1 6 )  Of, max \ rf ] Yf 

for l e ~ lk, where l d is the debonded  length of  the 
fibre. At some value of ld, l~, the debonding stress 
exceeds the yield stress of the fibre and the rela- 
tively large plastic radial contraction then reduces 
the interracial frictional resistance over the length 
(ld--l'd) to zero. Debonding continues at a 
constant load, resulting in a "debonding plateau" 
in the load-displacement curve as shown in Fig. 
5a, the magnitude of which is determined by the 
plastic strain in the fibre needed to remove the 
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Figure 5 Experimental  debonding and pull-out test results for a plastically deforming fibre (after Bowling and Groves 
[151). (a) Fibre load-d i sp lacement  curve, (b) variation of debonding stress with  embedded fibre length, and (c) vari- 
at ion of debonding plateau length with embedded fibre length. 

interfacial frictional resistance. The extent of this 
debonding plateau is related to the difference 
between l e and lk. Theoretical relations between 
(a) debonding stress, aS, max, and embedded fibre 
length, l~, and (b) debonding plateau length, D, 

and embedded fibre length le, are shown in Figs. 
5b and c respectively. Note that for fibres with 
le < lk, these authors simply assume that "elastic" 
debonding occurs with the debonding stress 
increasing less-than-linearly with embedded fibre 
length. 

The only measure of interfacial bond shear 
strength that can be obtained from an analysis of 
experimental pull-out test results on the basis of 
the model proposed by Bowling and Groves is an 
average value over the length lk at the instant of 
final fibre debonding. This can be calculated from 
the plateau debonding stress, a'S, max, and the 
critical fibre pull-out length, lk, as follows: 

2a~,maxrs (17) 
Tib, av -- lk  

Values fo r  a~,ma x and lk can be estimated from 
pull-out test results presented as shown in Figs. 5b 
and c. 

A graphical interpretation and analysis of pull- 
out test results for ductile fibres in a brittle matrix 
is proposed by Bartos [17]. Shear "flow", i.e. 
shear force per unit length, along the fibre-matrix 
interface is used rather than shear stress in order to 
avoid consideration of the reinforcing "fibre" 
perimeter, which is often difficult to determine, 
e.g. in the case of bundles of glass fibres. Non- 
uniform elastic and constant frictional shear flows 
are assumed to act along bonded and unbonded 
portions of the interface respectively. Debonding 
occurs when the maximum elastic shear flow 
equals the shear resistance per unit length of the 

bond - apparently any suitable theoretical model 
of the debonding process which is consistent with 
the fibre and matrix properties and the pull-out test 
configuration can be used to "express" the 
required debonding force, Pf.m~- 

The pull-out force-embedded fibre length 
diagram for a particular f ibre-matrix combination 
is dependent upon the strength of tile fibre and 
the characteristics of  the interfaciat bond. Typical 
el. max--le diagrams for a strong fibre and different 
interfacial bond condit io~ are shown in Fig. 6; in 
these diagrams, the tensile force required to break 
the fibre, Ps, ul~, is represented by the straight line 
DF, and the force on the fibre required to break 
the elastic component of the interfacial bond, 
Pf, edb = f ( l e ) ,  is represented by the curve OB. 
According to Bartos [ 17, 18], three different inter- 
facial bond conditions can be identified as follows: 

1. Elastic shear resistance to debonding only, 
with no assistant frictional resistance to slipping, 
i.e. 7"ib ' max 5/= 0 w i t h  Tib ' f = 0,  Fig. 6a. Fibres with 
embedment lengths l e < l  c debond instantly and 
pull out when the applied load reaches Ps, edb, but 
fibres with l e > l e fail in tension without any pre- 
vious debonding. An increase in the strength of the 
fibre, indicated by the straight line D'F' ,  causes a 
rapid increase in le until all fibres debond and pull 
out regardless of their length. 

2. No "elastic" bond at the interface, the load 
transfer being provided only by a uniform fric- 
tional resistance to slipping, i.e. rib, max = 0 but 
rib , f 4: 0, Fig. 6b. The greater the frictional resist- 
ance, the steeper the slope of the line OE and the 
shorter l e. 

3. A combination of "elastic" bonding and fric- 
tional resistance at the interface, i.e. 7"ib, max 5/= 0 
and rib, s :/: 0, Fig. 6c. Depending upon the relative 
magnitudes of Ps, ult, rib, max, and rib, s , and upon 
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Figure 6 Variation of maximum pull-out load with embedded fibre length for various interfacial bond conditions (after 
Bartos [ 18]). 

le, many modes of  failure are possible; the follow- 
ing three are represented in Fig. 6c: 

(a) le < lp - f ibre-matrix debonding is com- 
plete and instantaneous and fibre pull-out occurs 
immediately. 

(b) lp  < l e < lr - gradual f ib re-mat r ix  debond- 
ing followed by instantaneous debonding and fibre 
pull-out. 

(c) I e < le - gradual f ib re -mat r ix  de_bonding 
followed by tensile fracture of  the fibre. 

A relationship between pull-out load and 
embedded fibre length, apparently developed on 
the basis of  a shear lag theory, is given by Barton 
[17] as 

Pt, max = qib, max tanh 0/4(le - -  ld) + qib, f ld  
0/4 

(18) 

wheIe qib, max and qib, ~ can be taken as equal to 
~-ib, maxTrdf and ~'ib, flrdf respectively, and l d is the 
length of  the fibre which debonds before either 

complete f ibre-mat r ix  debonding and fibre pull- 
out or fibre failure occurs. I f  le < lp, where lp is 
the maximum embedded fibre length at which 
complete debonding occurs instantaneously, l a = 0 
and 

Pf, max = qib'maXtanh0/4le �9 (19) 
0/4 

According to Bartos, sufficient information can 
be obtained from a single test in which a pull-out 
mode of failure is observed to determine l c and lp, 
and hence to obtain estimates of  the values of  

qib,  max  and qlb,~, or rib, max and rib, f respectively. 
The values of  Pf, ma~, P~,a, i.e. the instantaneous 
drop in the applied load when debonding is com- 
plete, and P~,r, i.e. the residual force required to 
overcome the initial frictional resistance to pull- 
out, can be obtained from the pull-out load-f ibre  
displacement curve as shown in Fig. 7a. A point 
representing this test result (P) can then be plotted 
on a P~, max against l e diagram, Fig. 7b. The slope 

p, 

/1 T 
/ / I  1'% 

Pf,mox 

E 

, P 

B 

I I 

(a) ~f (b) 0 lp Zc Z e 

Figure 7 Experimental pull-out test result and analysis (after Bartos [ 171). (a) Pull-out load-f ibre  displacement curve, 
and (b) maximum pull-out load-embedded fibre length diagram. 
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of  the line CAE passing through P is 

Pf, r 
q b,, = ( 2 0 )  

The curved line, OAB, representing 

Pf ,  edb = q ib 'maXtanh0~4 le  (21) 
~4 

is tangent to line CAE at A, and can be determined 
using either a graphical or numerical curve-fitting 
technique. Note that OAB is assumed to reach 
some constant load value, identified here as 
P'f, edb, as  l e becomes large; hence qib,  max  c a n  be 
obtained by re-arranging Equation 19 and substi- 
tuting for P~, max and tanh ot4le, i.e. 

qib,  max = o(4ef, edb" (22) 

Laws [19] has extended Lawrence's analysis to 
show that the pull-out load-f ibre  displacement 
curve has the shape shown schematically in Fig. 8. 
The initial linear portion of  this curve, to point A, 
represents the elastic extension of  the fibre while 
the bond is still intact. Subsequent debonding is 
either catastrophic, the fibre pulling out without a 
further increase in load (solid line), or is progres- 
sive, an increase in load being required to over- 
come additional frictional resistance forces and 
achieve complete debonding (dashed line). In the 
latter case, after the maximum load is reached, 
point B, the load decreases until debonding is com- 
plete, point C. This debonding is accompanied by 
a decrease in fibre extension, which is not usually 
observed because pull-out tests are normally 
conducted under constant rate of  extension con- 
ditions; instead, the load usually drops suddenly 
f rom its maximum value to a value corresponding 
to that extension on the post-debond part of  the 
pull-out load-f ibre  displacement _ curve (see 
Fig. 4b). 

Values for rib, max and rib, f can be obtained 
from the pull-out load-f ibre  displacement curve if 
points A and C can be identified since, according 
to Laws, at point A where debonding begins, 

Pf - -  rib'maxrrdf tanh(~2le (23) 

and at point C where debonding is complete, 

Pf = rlb,frrdfle. (24) 

A value of riu, av can be calculated from the maxi- 
mum pull-out load, point B, using Equation 2, and 
this is noted as being less than rm, m ~  but greater 

8 
, / f - - N  

/ / 
/ / 

/ / 
A / / /  r ib,f # 0 

f=O 

~f 
Figure 8 Theoretical pull-out load-fibre extension/dis- 
placement cures (after Laws [19]). 

than r ib  , f. However, rib, av -'> rib,  max as l e -+ 0,  

although the difference can be large for even very 
short pull-out lengths, and rib, av--> rib, f as le ~ ~.  
Laws regards the maximum interfacial bond shear 
strength, rib, max, as the sum of the strengths of  a 
"chemical and cohesive bond"  and a "frictional 
bond",  i.e. the frictional resistance to slipping at 
the interface, rib, f, rather than as simply the 
strength of an adhesional bond between the fibre 
and the matrix. Hence a value for the "chemical or 
cohesive bond"  can be obtained by taking the dif- 
ference between r ib  ,max  and r ib  , f.  

Finally, Laws notes that although it is possible 
theoretically to calculate numerical values for the 
parameters representing resistance to debonding at 
the f ibre-mat r ix  interface from pull-out test 
results, these values apply to the conditions in the 
pull-out test, but not necessarily to those in a test 
of  a specimen of  the composite material consisting 
of  the same fibre and matrix. 

3. Conclusions 
The evolvement of  theoretical treatments of  the 
resistance to the f ibre-mat r ix  debonding and fibre 
pull-out processes in ductile f ibre-bri t t le  matrix 
composite systems, and of the associated analyses 
of  the effects of  parameters such as embedded 
fibre length, has apparently proceeded in a rational 
manner. Most of  the more recent treatments are 
essentially extensions and/or refinements of  earlier 
ones. In particular, since the recognition by 
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Lawrence [ 10] that  frictional resistance to slipping 

over a debonded por t ion o f  the interface can con- 
tribute significantly to the total  resistance to 
debonding, the major effort has been directed at 
developing appropriate methods for treating 
experimental data, i.e. pull-out test  results, to  
determine the nature and properties o f  the total  
debonding resistance o f  a particular f i b r e -ma t r ix  
combination.  

The principal characteristics of  the majori ty o f  
the theories with respect to their t reatment  of  the 
nature of  f i b r e . m a t r i x  debonding in general,  
and of  the effect o f  the embedded length o f  the 
fibre on the debonding and pull-out processes in 
particular, can be summarized as follows: 

1. There are two types of  resistance to f i b r e -  
matrix interfacial debonding: adhesional or elastic 
bonding, and frictional resistance to slipping. The 
total  resistance to debonding and the nature of  the 
debonding process are determined by the particu- 
lar combination o f  these two types that  occurs in a 
pull-out test specimen. 

2. The mixture o f  adhesional bonding and fric- 
tional resistance that occurs in a pull-out test 
specimen is ~ r y  strongly dependent upon the 
embedded length o f  the fibre - the contribution 
of  elastic/adhesionat bonding to the total  resist- 
ance to debonding decreases as embedded fibre 
length increases, whereas the contr ibution of  the 
frictional resistance to slipping increases. The force 
and energy required to cause debonding can be 
maximized by optimizing the embedded fibre 

length. 
3. The process of  f i b re -ma t r ix  debonding can 

be assessed and numerical estimates of  the para- 
meters representing debonding resistance, i.e. 

maximum interfacial bond shear strength (rib , max) 
and/or frictional resistance to slipping (rib ,~), can 
be obtained by  analysis of  the relationship 
between pull-out load and fibre displacement 
and/or between maximum pull-out load and 
embedded fibre length determined from pull-out 

tests. 
The major differences between the more com- 

plex of  these theories are: (a) the definition of  the 

elastic constant,  a,  involved in the expression o f  

the relationship between fibre load and embedded 
length, and (b) the actual method o f  treating the 
experimental  data to obtain numerical estimates of  
the debonding resistance parameters. 
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